MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAX-CUT and MAX-BISECTION are NP-hard on unit disk graphs

We prove that the max-cut and max-bisection problems are NP-hard on unit disk graphs. We also show that λ-precision graphs are planar for λ > 1/ √ 2 and give a dichotomy theorem for max-cut computational complexity on λ-precision unit disk graphs.

متن کامل

Minimum Bisection Is NP-hard on Unit Disk Graphs

In this paper we prove that the Min-Bisection problem is NP-hard on unit disk graphs, thus solving a longstanding open question.

متن کامل

Max-cut in circulant graphs

Poljak, S. and D. Turzik, Max-cut in circulant graphs, Discrete Mathematics 108 (1992) 379-392. We study the max-cut problem in circulant graphs C,,,, where C,,, is a graph whose edge set consists of a cycle of length n and all the vertex pairs of distance r on the cycle. An efficient solution of the problem is obtained so that we show that there is always a maximum cut of a particular shape, c...

متن کامل

On max cut in cubic graphs

This paper is concerned with the maximum cut problem in parallel on cubic graphs. New theoretical results characterizing the cardinality of the cut are presented. These results make it possible to design a simple combinatorial O(log n) time parallel algorithm , running on a CRCW PRAM with O(n) processors. The approximation ratio achieved by the algorithm is 1: 3 and improves the best known para...

متن کامل

Further Information on Publisher's Website: Httpxggdxfdoiforggihfihhugwuveqettperrrtsev 2 2 Use Policy Minimum Bisection Is Np-hard on Unit Disk Graphs

In this paper we prove that the Min-Bisection problem is NP-hard on unit disk graphs, thus solving a longstanding open question.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2007

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2007.02.013